Natural Formation and Pathological Effects of Branchiomyces Species in Farm-grown African Catfish (Clarias gariepinus) in Ilorin Metropolis

Ibrahim ADESHINA1,a,*, Phebe Omolara AMOKA1,b, Lateef Oloyede TIAMIYU1,c, Musa Idi-ogede ABUBAKAR1,d, Ojo ADESANMI2,e

1Department of Aquaculture and Fisheries, University of Ilorin, Nigeria
2Department of Agricultural Education, Kwara State College of Education, Ilorin, Nigeria
aORCID: 0000-0002-2404-2556, bORCID: 0000-0003-3121-4621, cORCID: 0000-0001-3421-4627,
dORCID: 0000-0002-3331-302X, eORCID: 0000-0001-4451-5602

Abstract: Branchiomyces species are the fungi responsible for branchiomycosis in fish. Branchiomycosis in fish is manifested by necrosis of the gills, and high incidences of mortality. It is a highly feared fungal disease of fishes in fish raising farms. This study is to investigate the occurrence and histopathological effect of Branchiomyces species in farm raised Clarias gariepinus in Ilorin metropolis. Thirty-six (36) farms were selected randomly from Ilorin metropolis. A total number of 108 gills were collected from 36 fish and examined for the presence of Branchiomyces species. Furthermore, histological examination was carried out on infected gills by using standard methods. Eleven out of 57 samples from males representing 19.30% were infected with Branchiomyces species while 17 out of 51 samples from females representing 33.33% were infected. Also, females had higher load of Branchiomyces species (5.0 × 10^3 cfu/g) and males had 4.0 × 10^3 cfu/g. There was significant difference in the percentage of the infection between males and females (p = 0.003). Males had higher lamellae length and width than the females (p>0.05). The gills show an observable lesion, diffuse infiltrate, sanguineous congestion dilation of marginal vascular channel and disorganization of secondary gill lamellae. The study indicated that Branchiomyces species showed a high presence in farm-raised African catfish. The gills of infected fishes showed early stage of alterations. The gill histomorphometry, indicated that the lamellae were affected which could lead to respiratory disorder.

Keywords: Branchiomyces species, Clarias gariepinus, gill, infection.

Introduction

African catfish, Clarias gariepinus is one of the most widely distributed and cultured fish species in tropical Africa (Adeshina et al., 2016) because of its high flesh quality and tolerance to wide range of water quality parameters, fast growth, and economic value (Fred and Jordan, 2011). Branchiomycosis caused by fungi of Branchiomyces species, is manifested by necrosis of the gills, and high incidences of mortality (Papernaya and Smirnova, 1997; Post, 1987) and mostly occur in warm climatic region (Ramaiah, 2006). The fungi have become an organism of concern because it is housed on the primary organs such as gill and skin.
Scholz (1999) has reported that Branchiomyces is responsible for more than 60% loss of total investment in a farm when plagued. Presence of branchiomycosis has been reported in fish from Egypt and Israel (Post, 1987), Germany, Poland, Italy, and Hungary (Fred and Jordan, 2011), Brazil and Taiwan (Scholz, 1999). Although branchiomyces species has not been reported in Nigeria, but its occurrence might be going on unreported, hence the need for this study.

Necrotic effect of Branchiomyces on the gills renders the fish to be susceptible to predation, infections from opportunistic pathogens and mortality. Fish with grossly infected gills will have difficulty in breathing, resulting to loss of appetite, body imbalance and death. Therefore, Branchiomyces must be avoided and attended to when noticed, to ensure profitability in aquabusiness. This study investigated the occurrence and histopathological effect of Branchiomyces species in farm raised *Clarias gariepinus* in Ilorin metropolis.

Materials and Methods

Description of the study area

Ilorin, the capital of Kwara state, is located on the coordinates 8°30'N5°00'E, covering an area of 765Km² with sixteen (16) local government areas with population of 856 900 in 2015 (KWADEP, 2015). The four agro-ecological zones of Kwara State were adopted for this study (KWADEP). Farms in each zone were stratified into large, medium and small scales as described by Adeshina et al. (2016) and Fagbenro and Adebayo (2005). Five percent (5%) of the registered farms were randomly selected.

Collection and identification of fish: A total number of 36 adult fish of *Clarias gariepinus* were collected (3 fish x 3 scale of farming x 4 zones). The choice of this size is because it forms the most stage number of colony forming units (CFU/g) was estimated for the fungal species. The samples were disinfected with a swab of cotton moistened with 70% ethyl alcohol (Amlacher, 1970). All positive samples examined by direct microscopy was cultured on Sabouraud’s dextrose agar (SDA). The inoculated plates were incubated at 28°C for 7 days (Finegold et al., 1986) and sub-cultured on SDA plates at 38°C for 5 days (Eli et al., 2011; Ellis, 1977). Lactophenol cotton blue stain (Refai and Abd El-alim, 1987) was applied, for examination of fungal growth on microscopic slide. The shape, diameter of hyphae and spores were measured following the gross morphological examination. Percentage of infection was determined as:

\[
\text{Percentage of Infection} = \frac{\text{Infected samples}}{\text{Total Number of samples examined}} \times 100
\]

Mycological examination

Direct examination of the gills was done by mounting the slides under light microscope to revealed and observe the spores characteristics of Branchiomyces species.

Histopathological examination

Gills specimens were examined for histopathological changes. The specimen was rapidly fixed in 10% natural formalin buffered phosphate for 24 hours, washed under running tap water and dehydrated through ascending grades of ethanol. It was cleaned in chloroform and embedded in paraffin wax at 60°C. The sections of 5 μm thickness were stained by Hematoxylin and eosin stain (Adeshina et al., 2019; Eyarefe et al., 2008).

Gill morphometry and fungal density

Lamella length and breadth was measured using microscale meter (Eyarefe et al., 2008). The number of colony forming units (CFU) per gram of the weight (CFU/g) was estimated for the fungal species.

Statistical analysis

The data obtained were analyzed using descriptive statistics. Significant difference in the percentage of infection between males and females was performed using chi-square test. Mann-Whitney *U* test (*p > 0.05*) for independent samples was utilized for the comparison of means between males and females with the aid of IBM SPSS version 20.
Results

It was found that 19 of the samples used in our study were males and 17 of them were females (Table 1). There were no significant differences in the body weight, total length and standard length of males and females ($p > 0.05$). The mean body weight of the males was $333.18 \pm 13.11 \, g$ while the females had the mean of $363.00 \pm 15.57 \, g$. Males had total length of $34.64 \pm 0.69 \, cm$ and standard length of $34.64 \pm 0.69 \, cm$ while the females had a total length and standard length 30.33 ± 0.77 and $31.57 \pm 0.53 \, cm$, respectively (Table 1).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Males (Mean ± SE)</th>
<th>Females (Mean ± SE)</th>
<th>Total (Mean ± SE)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Fish</td>
<td>19</td>
<td>17</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Body Weight (g)</td>
<td>333.18 ± 13.11</td>
<td>363.00 ± 15.57</td>
<td>347.38 ± 10.39</td>
<td>0.073</td>
</tr>
<tr>
<td>Total Length (cm)</td>
<td>34.64 ± 0.69</td>
<td>34.73 ± 0.65</td>
<td>34.68 ± 0.46</td>
<td>0.907</td>
</tr>
<tr>
<td>Standard Length (cm)</td>
<td>30.33 ± 0.77</td>
<td>31.57 ± 0.53</td>
<td>30.92 ± 0.48</td>
<td>0.200</td>
</tr>
</tbody>
</table>

Note: There is no significant difference between the mean of the body weight, total length and standard length.

Occurrence of Branchiomycetes species

The occurrence of Branchiomycetes species in farm raised African catfish in relation to sex revealed that about 19.30% of males were infected with Branchiomycetes species while 33.33% of females were infected (Table 2). Also, females had higher load of Branchiomycetes species ($5.0 \times 10^3 \, cfu/g$) than the males ($4.0 \times 10^3 \, cfu/g$). There was significant difference in percentage of infection between males and females ($p = 0.003$).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of all samples</td>
<td>57</td>
<td>51</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Number of infected samples</td>
<td>11</td>
<td>17</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Number of fungi (CFU/g)</td>
<td>4.0×10^1</td>
<td>5.0×10^1</td>
<td>9.0×10^1</td>
<td></td>
</tr>
<tr>
<td>Percentage of Infection (%)</td>
<td>19.30</td>
<td>33.33</td>
<td>25.93</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Gill histomorphometry of African catfish naturally infected with Branchiomycetes species was presented in Table 3. Males had higher lamellae length $175.69 \pm 9.27 \, mm$ than the females (164.32 ± 8.77). Similarly, lamellae width and area of absorption were higher in males than the females. However, there were no significant differences in lamellae length, lamellae width and areas of absorption of infected African catfish.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Males</th>
<th>Females</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamellae Length (mm)</td>
<td>175.69 ± 9.27</td>
<td>164.32 ± 8.77</td>
<td>0.39</td>
</tr>
<tr>
<td>Lamellae Breadth (mm)</td>
<td>60.22 ± 6.22</td>
<td>50.86 ± 6.125</td>
<td>0.31</td>
</tr>
<tr>
<td>Area of Absorption (mm²)</td>
<td>10646.00 ± 1285.24</td>
<td>8704 ± 1345.92</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Note: Area of absorption = Lamellae length × Lamellae Breadth. There was no statistically significant difference between the lamellae length, lamellae breadth and area of absorption.

Histopathological examination

Histopathologically, the gills showed an observable lesion with normal primary lamellae and pillar cells. There was diffuse infiltrate in the lamellae, sanguineous congestion dilation of marginal vascular channels. Furthermore, moderate to mild lamellae hyperplasia, increasing respiratory epithelium fusion and disorganization of secondary gill lamellae were noticed (Figure 1).

Discussion and Conclusions

Presence of Branchiomycetes species in the gill of fish have been reported to cause infection (Branchiomycosis). This disease resulted in respiratory disorder and high mortality (Khalil et al., 2015; Noga, 2010). Noga (2010) has reported that B. sanguinis and B. demigrans are the most...
common species in fish. This study showed the presence of *Branchiomyces* species in farm-raised African catfish, *Clarias gariepinus*. More so, females fishes have higher infection than the male ones.

![Figure 1](image)

Figure 1. Histological section of gill of *Clarias gariepinus* infected with Branchiomycosis. (a) There is observable lesion, the primary lamellae and pillar cells are normal, (b) There is diffuse infiltrate in the lamellae, sanguineous congestion dilation of marginal vascular channels, (c) There is moderate to mild lamellae hyperplasia, (d) Lifting of respiratory epithelium fusion and disorganization of secondary gill lamellae. Shortening of secondary lamellae was observed. All images were HE ×40, 100.

Body weight, total length and standard length were identified as factors associated with occurrence of *Branchiomyces species* in this study (P > 0.05). The results of the present study were in agreement with the finding of (El-Bouhy and Heba, 2014; Riad et al., 2015) who reported the presence of *Branchiomyces* species in common carp and *Oreochromis niloticus*. Branchiomycosis, an emerging acute infection of the gills and is able to cause high mortality and respiratory discomfort in many species of freshwater fish such as *Oreochromis niloticus*, *Cyprinus carpio*, the eel, and the bass (El-Bouhy and Heba, 2014). Its occurrence has been reported majorly in different localities in Egypt (Riad et al., 2015), and also in Europe and the southeast USA.

The histological examination of infected gills show that *Branchiomyces* species created lesions on the gills of infected fish. Primary lamellae and pillar cells were normal. There was a diffuse infiltrate in the lamellae and sanguineous congestion dilation of marginal vascular channels. Furthermore, moderate to mild lamellae hyperplasia with increased respiratory epithelium fusion and disorganization of secondary gill lamellae were noticed. Flores and Thomas (2011) have reported that there are three stages of alterations caused by Branchiomycosis. Stage 1 shows hypertrophy and hyperplasia of gill epithelium, sanguineous congestion, dilation of marginal vascular channels, lifting of respiratory epithelium, fusion and disorganization of secondary gill lamellae, shortening of secondary lamellae and leukocyte infiltration of gill epithelium. The findings of this study fall within the stage 1 as described by Flores and Thomas (2011). This further suggests *Branchiomyces* species has established itself in the sampled fish and is likely to move the next stage which could be more dangerous and devastating.

Therefore, this study indicated that there was a high incidence of *Branchiomyces* species in farm-raised African catfish in Ilorin metropolis. The gills of infected fish showed early stage of alterations. The gill histomorphometry, indicated that the lamellae were affected which could lead to respiratory disorder.
Compliance with Ethical Standard

This study was funded by Unilorin (Grant Number SDA 2015).

Conflict of Interest

Authors declare that there are no conflicts of interest.

Ethical Approval

The study was approved by animal care use and research committee of University of Ibadan (ACUREC/UI/App/2016/006).

References

Flores-Lopes, Thomaz AT, 2011: Histopathological alterations observed in fish gills as a tool in environmental monitoring. Brazil J Biol, 71, 179-188.

Khalil RH, Talaat T, Saad TAM, Abo Selema H, Abdel-Latif MR, 2015: Branchiomycyes demigrans Infection in Farm-Reared Common Carp (Cyprinrus carpio L.) and Nile Tilapia (Oreochromis niloticus) at Different Localities in Egypt, With Special Emphasis to the Role of Environmental Stress Factors. Intl J Innov Stud Aqua Biol Fish, 1,15-23.

Noga EJ, 2010: Fish disease: Diagnosis and treatment. 2nd ed., Wiley Blackwell, USA.

Riad HK, TalaatTS, Talal AM, Abo S, Hany M, Abdel-Latif R, 2015: Branchiomycyes demigrans Infection in Farm-Reared Common Carp (Cyprinrus carpio) and Nile Tilapia (Oreochromisniloticus) at Different Localities in Egypt, With Special Emphasis to the Role of Environmental Stress Factors. Intl J Innov St Aqua Biol Fish, 1, 15-23.

*Corresponding Author: Ibrahim ADESHINA, Ph.D Department of Aquaculture and Fisheries, University of Ilorin, Nigeria.

e-mail: adesina.i@unilorin.edu.ng

Harran Ünivesitesi Veteriner Fakültesi Dergisi, 2019; Cilt 8, Sayı 2